	——— Mid-term	и Ехам	
Time:	14:00–17:00, September 23, 2022.	Course name:	Algebraic Number Theory
Degree:	BIII & MII.	Year:	Autumn Semester; 2022–2023.
Course instructor:	Ramdin Mawia.	Total Marks:	30.

Attempt all of the following problems.

Algebraic Number Theory

- 1. Let K be an algebraic extension of \mathbb{Q} and let \mathcal{O}_K be the integral closure of \mathbb{Z} in K. Show that any nonzero prime ideal of \mathcal{O}_K is maximal.
- 2. When do we say that a ring is a Dedekind domain? Let A be a Dedekind domain with a finite number of prime ideals, say $\mathfrak{p}_1, ..., \mathfrak{p}_n$.
 - (a) Show that for each *i*, there is an $x_i \in \mathfrak{p}_i$ such that $x_i \notin \mathfrak{p}_i^2$ and $x_i \notin \mathfrak{p}_j$ for all $j \neq i$.
 - (b) Show that x_i generates \mathfrak{p}_i , i.e., $\mathfrak{p}_i = \langle x_i \rangle$.
 - (c) Conclude that A is a PID.
- 3. Define a discrete valuation ring (DVR).
 - (a) Let A be a Noetherian local ring with maximal ideal \mathfrak{m} . Suppose \mathfrak{m} is generated by $\pi \in A$, such that π is not nilpotent. Show that
 - i. $\cap_{i \ge 1} \mathfrak{m}^i = (0);$
 - ii. every $x \in A$ can be uniquely written as $x = \pi^n u$ for some unit u in A and some integer $n \ge 0$; iii. A is an integral domain, and hence a DVR.
 - (b) Is it true that the power series ring $\mathbb{Q}[[X]]$ is a DVR?
 - (c) Let *A* be a DVR and *B* be its integral closure in a finite separable extension of its field of fractions. Show that *B* is a PID. [*Hint*: Use problem no. 2 above.]
- 4. Let p be a prime, $\omega \in \mathbb{C}$ be a primitive p^r -th root of unity (with $r \ge 1$) and let $K = \mathbb{Q}[\omega]$ be of degree n over \mathbb{Q} . Show that
 - (a) $D_{K/\mathbb{O}}(1, \omega, \dots, \omega^{n-1})$ divides a power of p.
 - (b) $D_{K/\mathbb{Q}}(1, \omega, \dots, \omega^{n-1}) = D_{K/\mathbb{Q}}(1, 1 \omega, \dots, (1 \omega)^{n-1})$
 - (c) $\prod_{i \in S} (1 \omega^j) = p$, where $S = \{j : 1 \leq j \leq p^r, p \text{ does not divide } j\}$.
 - (d) Show that the ring of integers of K is $\mathbb{Z}[\omega]$. [*Hint*: Any element α in the ring of integers can be written as

$$\alpha = \frac{1}{d} [a_1 + a_2(1 - \omega) + \dots + a_n(1 - \omega)^{n-1}]$$

where $d = D_{K/\mathbb{Q}}(1, 1 - \omega, \dots, (1 - \omega)^{n-1})$ and the a_i are integers.]

- 5. State true or false, with brief but complete justifications (**any five**):
 - (a) If $\mathfrak{p}_1, ..., \mathfrak{p}_m$ are prime ideals in a Dedekind domain A, then

$$\mathfrak{p}_1^{e_1}\cdots\mathfrak{p}_m^{e_m}+\mathfrak{p}_1^{f_1}\cdots\mathfrak{p}_m^{f_m}=\mathfrak{p}_1^{\min\{e_1,f_1\}}\cdots\mathfrak{p}_m^{\min\{e_m,f_m\}}$$

for integers $e_i, f_j \ge 0$.

- (b) The polynomial ring in two variables $\mathbb{Q}[X, Y]$ is a Dedekind Domain.
- (c) The polynomial ring $\mathbb{Z}[X]$ is integrally closed (in its quotient field).
- (d) In a number field K, it is possible that $\mathcal{O}_K \cap \mathbb{Q}$ is a strictly larger set than \mathbb{Z} .
- (e) The ring of integers in $\mathbb{Q}[\sqrt{7}]$ is $\mathbb{Z}[\sqrt{7}]$.
- (f) A Dedekind domain which is a UFD is necessarily a PID.
- (g) Let K be a number field of degree n. If $\{\beta_1, ..., \beta_n\} \subset \mathcal{O}_K$ is a basis of K over F, then it is necessarily an integral basis for K, that is, a basis for the ring of integers \mathcal{O}_K over \mathbb{Z} .
- (h) Let A be a subring of B such that B is integral over A. Then for any nonzero prime ideal \mathfrak{P} of B, $A \cap \mathfrak{P}$ is a nonzero prime ideal of A.
- (i) The absolute discriminant of a number field can be equal to 2022.

5

5

10

5

5